Oil Palm Tree Detection with High Resolution Multi-Spectral Satellite Imagery
نویسندگان
چکیده
Oil palm tree is an important cash crop in Thailand. To maximize the productivity from planting, oil palm plantation managers need to know the number of oil palm trees in the plantation area. In order to obtain this information, an approach for palm tree detection using high resolution satellite images is proposed. This approach makes it possible to count the number of oil palm trees in a plantation. The process begins with the selection of the vegetation index having the highest discriminating power between oil palm trees and background. The index having highest discriminating power is then used as the primary feature for palm tree detection. We hypothesize that oil palm trees are located at the local peak within the oil palm area. To enhance the separability between oil palm tree crowns and background, the rank transformation is applied to the index image. The local peak on the enhanced index image is then detected by using the non-maximal suppression algorithm. Since both rank transformation and non-maximal suppression are window based, semi-variogram analysis is used to determine the appropriate window size. The performance of the proposed method was tested on high resolution satellite images. In general, our approach uses produced very accurate results, e.g., about 90 percent detection rate when compared with manual labeling.
منابع مشابه
Using Convolutional Neural Networks to Count Palm Trees in Satellite Images
In this paper we propose a supervised learning system for counting and localizing palm trees in high-resolution, panchromatic satellite imagery (40cm/pixel to 1.5m/pixel). A convolutional neural network classifier trained on a set of palm and no-palm images is applied across a satellite image scene in a sliding window fashion. The resultant confidence map is smoothed with a uniform filter. A no...
متن کاملObject Level Strategy for Spectral Quality Assessment of High Resolution Pan-sharpen Images
Panchromatic and multi-spectral images produced by the remote sensing satellites are fused together to provide a multi-spectral image with a high spatial resolution at the same time. The spectral quality of the fused images is very important because the quality of a large number of remote sensing products depends on it. Due to the importance of the spectral quality of the fused images, its eval...
متن کاملDeep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images
Oil palm trees are important economic crops in Malaysia and other tropical areas. The number of oil palm trees in a plantation area is important information for predicting the yield of palm oil, monitoring the growing situation of palm trees and maximizing their productivity, etc. In this paper, we propose a deep learning based framework for oil palm tree detection and counting using high-resol...
متن کاملData Fusion and Multi-Criteria Decision Making for Producing Oil and Gas Resources Potential Maps (Case Study: Saracheh Zone, Qom Province)
This paper focuses on the application of Geoinformatic methods (simultaneous using of remote sensing, geographic information system, global positioning system, terrestrial and aerial photogrammetry) in optimal operation and exploration risk reduction of oil and gas reservoirs. To approach the purpose, two aspects of remote sensing (satellite image) and terrestrial and aerial photogrammetry have...
متن کاملImprovement in the Detection of Land Cover Classes Using the Worldview-2 Imagery
Recent advances in satellite and airborne sensors make spatial and multispectral high-resolution imagery effortlessly available. These advances give the chance to address and solve some old problems related to the poor spatial or spectral resolution; such as the lack of details for certain features or the inability of the traditional classifiers to detect some land cover types due to the missin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014